COMPSCI 389
Introduction to Machine Learning

Classification Example

Prof. Philip S. Thomas (pthomas@cs.umass.edu)

Note: This presentation covers (and provides additional context/information regarding)
23 Classification Example.ipynb

CIFAR-100

* Produced by the Canadian Institute For Advanced Research (CIFAR).

* One of the most widely used data sets for testing ML methods for
computer vision.

* Contains 60,000 images
* Each 32x32 pixels (color!)

* Two variants, CIFAR-10 (10 classes) and CIFAR-100 (100 classes)
* CIFAR-10 has 6,000 images of each class.
* CIFAR-100 has 600 images of each class.

* CIFAR-10 classes: airplanes, cars, birds, cats, deer, dogs, frogs, horses,
ships, and trucks

Loading CIFAR-100

* When installing PyTorch we installed torchvision along with

torch.
* This includes methods for loading common data sets like CIFAR-100

trainset = torchvision.datasets.CIFAR1@0(root="./data’, train=True,
download=True, transform=transform)

* This downloads the training data to a “data” subdirectory.
* The provided transforms modify the original data slightly.

trainset = torchvision.datasets.CIFAR1@@(root="./data’, train=True,

download=True, transform=transform)
Loading CIFAR-100

transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((e.5, ©.5, ©.5), (8.5, 0.5, 9.5))])

transforms.ToTensor() converts the images, represented as NumPy arrays, into PyTorch tensors. It scales pixel
intensities from [0, 255] to [0.0, 1.0], and changes the order of dimensions from (heigth, width, channels) to
(channels, height, width).

transforms.Normalize adjusts the color channels of the images (now tensors), performing a form of normalization.
It re-scales the red, green, and blue channels from [0, 1] to [—1, 1]. The first argument, (0.5, 0.5, 0.5), indicates that
0.5 will be subtracted from each channel (red, green, and blue). The second argument, also (0.5,0.5,0.5)
indicates that each channel should be divided by 0.5 (i.e., mulitplied by two).

Loading CIFAR-100

trainset = torchvision.datasets.CIFAR190(root="./data’, train=True,
download=True, transform=transform)

testset = torchvision.datasets.CIFAR1@@(root="'./data’, train=False,
download=True, transform=transform)

* Create data loaders (each with 2 threads).

trainloader = torch.utils.data.DataLoader(trainset, batch _size=16,
shuffle=True, num_workers=2)

testloader = torch.utils.data.DatalLoader(testset, batch size=1p,
shuffle=False, num workers=2)

You can experiment with different batch siges!

class Net(nn.Module):
def init (self):

Conv2d represents a convolutional layer for a
2-dimensional image.

hear(120, 84)

The first argument is the number of channels
n.Linear (84, 100)

(3 for red, green, blue)

rd(self, x):
self.pool(F.relu(self.convl(x)))
= self.pool(F.relu(self.conv2(x)))
= X.view(-1, 16 * 5 * §)
= F.relu(self.fcl(x))
= F.relu(self.fc2(x))

X = self.fc3(x)

Additional optional arguments include stride. return X

The second argument is the number of filters
(output channels)

The)third argument is the patch size (kernel
size

X
X
X
X

You can experiment with different
network architectures!

Conv2d represents a convolutional layer for a
2-dimensional image.

The first argument is the number of channels
(3 for red, green, blue)

The second argument is the number of filters
(output channels)

The)third argument is the patch size (kernel
size

Additional optional arguments include stride.

class Net(nn.Module):
def init (self):

def

super(Net,
self.convl

self.pool =

self.conv2
self.fcl =
self.fc2 =
self.fc3 =

self). init ()
nn.Conv2d(3, 6, 5)
nn.MaxPool2d(2, 2)
nn.Conv2d(6, 16, 5)
nn.Linear(16 * 5 * 5, 120)
nn.Linear(120, 84)
nn.Linear(84, 100)

forward(self, x):

>
I

X X X X

self.pool(F.relu(self.convl(x)))
= self.pool(F.relu(self.conv2(x)))
= X.view(-1, 16 * 5 * §)

= F.relu(self.fcl(x))

= F.relu(self.fc2(x))

X = self.fc3(x)

return X

Prepare for Training (nothing new!)

Create the network.

net = Net()
Python

You can experiment with different optimizers! Changing this to:
Select the loss function and optimizer. optimizer = optim.Adam(net.parameters(), 1lr=0.001)
resulted in lower accuracy.

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

Python

Set up for GPU training:
Dr Dy B - W

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
display(device)
net.to(device)

Python

‘device(type='cuda‘, index=0) 9‘

Train the network (nothing new!)

for epoch in range(10@): # loop over the dataset multiple times
running loss = 0.0
for i, data in enumerate(trainloader, 90):
get the inputs; data is a list of [inputs, labels]
inputs, labels = data[@].to(device), data[l].to(device)

zero the parameter gradients
optimizer.zero_grad()

forward + backward + optimize
outputs = net(inputs)

loss = criterion(outputs, labels)
loss.backward()

optimizer.step()

print statistics

running_loss += loss.item()

if i % 2000 == 1999: # print every 2000 mini-batches
print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}")
running loss = 0.0

[1, 2000] loss: 4.601

[2, 2000] loss: 4.143

[3, 2000] loss: 3.808

[4, 2000] loss: 3.555

[5, 2000] loss: 3.355

[6, 2000] loss: 3.219

[7, 2000] loss: 3.101

[8, 2000] loss: 3.005

. . [9, 2000] loss: 2.907
This took 23 minutes on my RTX 2070 2000] Loss: 2,842
2000] loss: 2.777
2000] loss: 2.714

2000] loss: 2.672

2000] loss: 2.622

2000] loss: 2.578

The code prints the loss every 2000 2060] loss: 2.525
.. - 2000] loss: 2.498
mini-batches within each epoch. 2000] loss: 2.446
With smaller batches this will have 2000] loss: 2.414
multiple lines per epoch: 2000] loss: 2.394
[1,2000] 2000] loss: 2.357
[1,4000] 2000] loss: 2.320
2000] loss: 2.292

'” 2000] loss: 2.258
[2, 2000] 2000] loss: 2.226

[2, 4000]

2000] loss: 1.549

2000] loss: 1.533

2000] loss: 1.526

2000] loss: 1.539

Evaluate (nothing new!)

correct = ©

total = @

with torch.no_grad():

for data in testloader:

inputs, labels = data[@].to(device), data[l].to(device)
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(9)
correct += (predicted == labels).sum().item()

print(f'Accuracy of the network on the 10000 test images: {10@ * correct // total} %')

Python

Accuracy of the network on the 1000@ test images: 25 %

12

Is 25% accuracy good?

* Significantly better than random (1% accuracy)
* Far worse than state of the art (~80% in 2010, high-90% today)

13

Serating

Thank you.

Degginmenic

	Slide 1: COMPSCI 389 Introduction to Machine Learning
	Slide 2: Note: This presentation covers (and provides additional context/information regarding) 23 Classification Example.ipynb
	Slide 3: CIFAR-100
	Slide 4: Loading CIFAR-100
	Slide 5: Loading CIFAR-100
	Slide 6: Loading CIFAR-100
	Slide 7
	Slide 8
	Slide 9: Prepare for Training (nothing new!)
	Slide 10: Train the network (nothing new!)
	Slide 11
	Slide 12: Evaluate (nothing new!)
	Slide 13: Is 25% accuracy good?
	Slide 14: End

